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ABSTRACT

We present a novel semi-automatic method for segmenting neural
structures in large, highly anisotropic EM (electron microscopy)
image stacks. Our method takes advantage of sparse scribble anno-
tations provided by the user to guide a 3D variational segmentation
model, thereby allowing our method to globally optimally enforce
3D geometric constraints on the segmentation. Moreover, we lever-
age a novel algorithm for propagating segmentation constraints
through the image stack via optimal volumetric pathways, thereby
allowing our method to compute highly accurate 3D segmentations
from very sparse user input. We evaluate our method by recon-
structing 16 neural structures in a 1024 x 1024 x 50 nanometer-
scale EM image stack of a mouse hippocampus. We demonstrate
that, on average, our method is 68% more accurate than previous
state-of-the-art semi-automatic methods.

1 INTRODUCTION

Mapping neural circuitry is an important ongoing challenge in neu-
robiology. Current approaches to this task involve tracing neural
structures through segmented nanometer-scale EM (electron mi-
croscopy) image stacks of brain tissue. Since our understanding
of neural circuitry is often limited by our ability to reconstruct neu-
ral structures from EM image stacks, accurately segmenting neu-
ral structures is an important open problem in the biological image
analysis community.

Dense reconstruction algorithms [3, 5, 6] generally rely on su-
pervised learning methods to automatically classify every pixel in
an image stack according to the type of cellular structure to which it
belongs. However, no dense reconstruction algorithm can reliably
produce segmentations that are completely free of topological er-
rors. In practice, these methods often require significant user effort
to correct errors in the automatically generated segmentations.

On the other hand, sparse reconstruction algorithms generally
rely on the user to interactively guide the segmentation of indi-
vidual neural structures. Most existing sparse algorithms compute
3D reconstructions as sequences of locally optimal 2D segmenta-
tions after the user provides an initial 2D contour [4, 10]. However,
these approaches do not optimally enforce 3D geometric consis-
tency constraints on the resulting segmentation, and can require fre-
quent user intervention. The recent Markov Surfaces algorithm [7]
requires user-defined 2D contours on the first and last slices of an
image stack. This algorithm automatically tessellates a set of glob-
ally optimal paths between these contours, relying on 2D Bézier
interpolation to produce smooth surfaces. However, since Bézier
interpolation does not take into account the underlying image data,
the resulting segmentations may ignore important image features.

2 OUR METHOD

We observe that the problem of reconstructing neural structures
through highly anisotropic EM image stacks is conceptually sim-
ilar to the problem of tracking moving objects in video sequences.
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Figure 1: Overview of our method. We assume that we are given
scribble annotations indicating a neural structure of interest on the
first and last slices of an image stack (top left). We compute 2D
segmentations that contain the scribble annotations and align with
strong image edges; these 2D segmentations define hard constraints
on our 3D segmentation (top right). We propagate the 2D segmenta-
tions through the image stack according to an implicitly represented
volumetric pathway, which we compute based on the dense optical
flow between image slices; the interior level sets of this volumetric
pathway define soft constraints on our 3D segmentation (bottom left).
We compute the final 3D segmentation by globally refining the volu-
metric pathway according to an anisotropic variational segmentation
model that aligns with strong in-plane image edges and enforces 3D
smoothness (bottom right).
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Figure 2: Key observations motivating our method. Anisotropic Total
Variation [8] fails to segment this neural structure from sparse scrib-
ble annotations (a), but succeeds if scribble annotations are given on
every slice (b). Our method only requires scribble annotations on the
first and last slices because we automatically propagate segmenta-
tion constraints through the image stack. However, propagating user
scribbles as segmentation constraints results in a significant under-
segmentation of this neural structure (c). Instead, we compute 2D
segmentations from the scribbles and propagate the 2D segmen-
tations; this results in a more accurate segmentation of this neural
structure (d). Scribble annotations are shown in light blue, segmen-
tations are shown in dark blue, and automatically propagated seg-
mentation constraints are shown in green.
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Figure 3: Computing the cost volume. There are many possible paths
through the image stack (shown in red) that connect the 2D segmen-
tations on the first and last slices (shown in dark blue) via p, but there
is only one shortest path (shown in black); we set the cost of each
pixel in the cost volume to be the length of this path (a). For ex-
ample, p, will be assigned a higher cost than p;, since the length
of its shortest path is longer; this means p, is less likely to belong
to the neural structure of interest than p; (b). When computing the
length of each path, we model the distance between pixels p and q on
adjacent slices (shown in green) as a function of the optical flow vec-
tor originating at p (shown in orange) (c). In this formulation, paths
through the image stack that agree strongly with the optical flow field
will have very short lengths, and the pixels belonging to these paths
will be assigned very low costs. Thus, the cost volume implicitly de-
fines a volumetric pathway containing pixels that are likely to belong
to the neural structure of interest.

Based on this observation, our work is inspired by the recent
Anisotropic Total Variation model proposed by Unger et al. [8],
which tracks objects through video sequences based on sparse con-
straints provided by the user. However, the absence of color infor-
mation in EM image data and poor spatial continuity across EM
image slices prevent the direct application of this method to neural
structure reconstruction (Figure 2). To account for these additional
challenges, we propose the following novel segmentation method.

Input. We assume that the user marks the neural structure of
interest with a few foreground and background scribbles on the first
and last image slices.

Computing 2D segmentations. We compute 2D segmentations
of the neural structure of interest using the variational segmentation
model of Unger et al. [9]. This results in 2D segmentations that
respect the user-provided scribble annotations and align with strong
image edges. The foreground and background regions of these 2D
segmentations define hard foreground and background constraints
on our 3D segmentation, respectively.

Computing an Optimal Volumetric Pathway. Once we have
obtained hard constraints on the first and last slices of our image
stack, we generate soft constraints on all the other slices by auto-
matically propagating the previously computed 2D segmentations
through the stack. We accomplish this by defining an optimal vol-
umetric pathway through the image stack that connects the previ-
ously computed 2D segmentations and encloses the pixels that are
most likely to belong to the neural structure of interest. In this
formulation, the optimal volumetric pathway is given by the inte-
rior level sets of a cost volume that encodes the probability of each
pixel in the image stack belonging to the neural structure of interest
(Figure 3). The interior level sets of this cost volume define soft
foreground constraints on our 3D segmentation.

Computing the 3D Segmentation. Once we have obtained hard
constraints on the first and last slices of the image stack, and soft
constraints on all other slices, we obtain the final 3D segmentation
by using the using the anisotropic variational segmentation model
of Unger et al. [8]. We demonstrate the accuracy of our method in
Figures 4 and 5.
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Figure 4: Accuracy of our method, Markov Surfaces [7], Geo-
Cuts [1], and Marker-Controlled Watersheds [2] while segmenting 16
neural structures in an annotated 1024 x 1024 x 50 mouse hippocam-
pus EM image stack. On average, our method is 68% more accurate
than Markov Surfaces [7], 91% more accurate than Geo-Cuts [1], and
263% more accurate than Marker-Controlled Watersheds [2].

Initial Slices

&:Qﬁ 3

Our Method

Ground Truth s

Figure 5: Segmentation results from our method, Markov Surfaces
[7], Geo-Cuts [1], and Marker-Controlled Watersheds [2] on various
slices of a 1024 x 1024 x 50 mouse hippocampus EM image stack.
Bright blue regions indicate the user-provided annotations used to
initialize the algorithms, dark blue regions indicate the resulting seg-
mentations.
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