BioVis 2011 Paper
GenAMap: Visualization Strategies for Structured Association Mapping
Association mapping studies promise to link DNA mutations to gene expression data, possibly leading to innovative treatments for diseases. One challenge in large-scale association mapping studies is exploring the results of the computational analysis to find relevant and interesting associations. Although many association mapping studies find associations from a genome-wide collection of genomic data to hundreds or thousands of traits, current visualization software only allow these associations to be explored one trait at a time. The inability to explore the association of a genomic location to multiple traits hides the inherent interaction between traits in the analysis. Additionally, researchers must rely on collections of in-house scripts and multiple tools to perform an analysis, adding time and effort to find interesting associations. In this paper, we present a novel visual analytics system called GenAMap. GenAMap replaces the time-consuming analysis of large-scale association mapping studies with exploratory visualization tools that give geneticists an overview of the data and lead them to relevant information. We present the results of a preliminary evaluation that validated our basic approach.
BioVis 2011 Papers and Abstracts