Interactive Extraction of Neural Structures with User-Guided Morphological Diffusion

Yong Wan, Hideo Otsuna, Chi-Bin Chien, Charles Hansen

Extracting neural structures with their fine details from confocal volumes is essential to quantitative analysis in neurobiology research. Despite the abundance of various segmentation methods and tools, for complex neural structures, both manual and semi-automatic methods are ineffective either in full 3D or when user interactions are restricted to 2D slices. Novel interaction techniques and fast algorithms are demanded by neurobiologists to interactively and intuitively extract neural structures from confocal data. In this paper, we present such an algorithm-technique combination, which lets users interactively select desired structures from visualization results instead of 2D slices. By integrating the segmentation functions with a confocal visualization tool neurobiologists can easily extract complex neural structures within their typical visualization workflow.

BioVis 2012 Information

The New UCSC Cancer Genomics BrowserUser-guided Segmentation of Thoracic Computed Tomography Data for Electrical Impedance Tomography Image ReconstructionVisualization and Exploration of 3D Toponome DataTractography in Context: Multimodal Visualization of Probabilistic Tractograms in Anatomical ContextUsing a Mathematical Graph Framework for Visualization of Inheritance Patterns in Commercial Plant PedigreesExtending The Grammar of Graphics for Biological Data VisualizationcompreheNGSive: A Tool for Exploring Next-Gen Sequencing VariantsMedSavant: Visual Analytics for Genetic Variation DatasetsBulk Synchronous VisualizationGetting Into Visualization of Large Biological Data SetsAracari: exploration of eQTL data through visualizationAn Abstract View of Associations Between Diseases and Developmental Gene SetsCan Adjacency Matrices help in the exploration and understanding of Multi-Omics Data?StratomeX: Enabling Visualization-Driven Cancer Subtype AnalysisGenomeRing: alignment visualization based on SuperGenome coordinatesScalable Interactive Analysis of Retinal Astrocyte NetworksVisual Analysis of Genome-wide Tracts of Homozygosity