MaTSE: The Microarray Time-Series Explorer

Paper
Paul Craig, Alan Cannon, Robert Kukla, Jessie Kennedy

This paper describes the design, development and evaluation of the Microarray Time-Series Explorer (MaTSE), a novel information visualization application for the exploratory analysis of large scale microarray timeseries data. The software combines a variety of visualization and interaction techniques, which work together to allow biologists to explore their data and reveal patterns that would otherwise be impossible to find. These include a scatter-plot that can be animated to view different temporal intervals of the data, a multiple coordinated view framework to support the cross reference of multiple experimental conditions, a novel method for highlighting overlapping groups in the scatter-plot, and a pattern browser component that can be used with scatterplot box queries to support cooperative visualization.

BioVis 2012 Information

The New UCSC Cancer Genomics BrowserUser-guided Segmentation of Thoracic Computed Tomography Data for Electrical Impedance Tomography Image ReconstructionVisualization and Exploration of 3D Toponome DataTractography in Context: Multimodal Visualization of Probabilistic Tractograms in Anatomical ContextUsing a Mathematical Graph Framework for Visualization of Inheritance Patterns in Commercial Plant PedigreesExtending The Grammar of Graphics for Biological Data VisualizationcompreheNGSive: A Tool for Exploring Next-Gen Sequencing VariantsMedSavant: Visual Analytics for Genetic Variation DatasetsBulk Synchronous VisualizationGetting Into Visualization of Large Biological Data SetsAracari: exploration of eQTL data through visualizationAn Abstract View of Associations Between Diseases and Developmental Gene SetsCan Adjacency Matrices help in the exploration and understanding of Multi-Omics Data?StratomeX: Enabling Visualization-Driven Cancer Subtype AnalysisGenomeRing: alignment visualization based on SuperGenome coordinatesScalable Interactive Analysis of Retinal Astrocyte NetworksVisual Analysis of Genome-wide Tracts of Homozygosity